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Area-preserving dynamics of a long slender finger by curvature:
A test case for globally conserved phase ordering
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A long and slender finger can serve as a simple “test bed” for different phase-ordering models. In this work,
the globally conserved, interface-controlled dynamics of a long finger is investigated, analytically and numeri-
cally, in two dimensions. An important limit is considered when the finger dynamics is reducible to area-
preserving motion by curvature. A free boundary problem for the finger shape is formulated. An asymptotic
perturbation theory is developed that uses the finger aspect ratio as a small parameter. The leading-order
approximation is a modification of the Mullins fing& well-known analytic solutiorwhose width is allowed
to slowly vary with time. This time dependence is described, in the leading order, by an exponential law with
the characteristic time proportional to tfeonstank finger area. The subleading terms of the asymptotic theory
are also calculated. Finally, the finger dynamics is investigated numerically, employing the Ginzburg-Landau
equation with a global conservation law. The theory is in very good agreement with the numerical solution.
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[. INTRODUCTION It is natural to attribute these differences to a basic differ-
ence in the character of transport: in globally conserved sys-
This work is motivated by the recent developments intems the transport is uninhibited by Laplacian screening ef-
phase-ordering theory. Phase ordering is the growth of orddects, typical for locally conserved diffusion-controlled
from disorder via domain growth and coarsening. As phasesystems. To study this basic difference in a simple setting,
ordering systems are strongly nonlinear and highly disorthe dynamics of a single long and slender finger is often
dered, their theoretical description remains challenditly  considered. It has been found receri} that, in a locally
To get insight, it is often useful to consider the coarseningconserved, diffusion-controlled system, the finger acquires a
dynamics of simple test objects. One such object is a spherdumbbell shape and shows nontrivial dynamic scalings for
cal droplet of the “minority” phase. It serves as the building the finger length and the “ball” size, while the initial finger
block of simplified phase-ordering theories for locally con-width remains almost constant until a late stage of the dy-
served(bulk-diffusion-controlled [2] and globally conserved namics. Furthermore, a finger-shaped domain‘needle”)
(interface-controlled[ 3] systems. served as a test object in still another conserved coarsening
Being such a simple object, a spherical droplet may nosystem: the one controlled by edge diffusi@]. Fingerlike
give sufficient insight. For example, its dynami¢tshape- objects appear naturally in two-dimensional simulations of
preserving shrinking or expansipifook the same in both dewetting[10], etc. In this work we investigate the globally
locally and globally conserved systems. On the other hand;onserved dynamics of a long slender finger. An additional
there are important differences in the phase-ordering behawnotivation for studying finger dynamics is a recent observa-
ior of locally and globally conserved systems. In both casestion that, at a late stage of coarsening of fractal clusters, the
an ensemble of droplets exhibits Ostwald ripening, and theluster morphology shows long branches, or fingers, in both
corresponding mean-field theories, due to Lifshitz and Slyoiocally [7,8,11, and globally[6,12] conserved systems.
zov [2] and to Wagne3], respectively, predict dynamic Here is an outline of the rest of the paper. In Sec. Il we
scaling behavior of the droplet size distributiomith differ- briefly review the Ginzburg-Landau equation with a global
ent dynamic exponentsHowever, for finite volume frac- conservation lawa phase field model for globally conserved
tions, the difference in the type of conservation law leads t@hase orderingand its general sharp-interface formulation in
a different role of correlations. Correlations between neightwo dimensions. Under a certain conditi¢that will be elu-
boring droplets are much more important in locally con-cidated this formulation is reduced to the area-preserving
served system[gl] than in globally conserved ongs|. Even  dynamics by curvature. In Sec. Ill we formulate a moving
bigger differences have been found in the phase-ordering dysoundary problem for the finger dynamics and develop a
namics of locally and globally conserved systems with long-perturbation theory that enables us to obtain an intermediate
range correlations. Coarsening fofictal clustersshows dy- — asymptotic solution for the finger shape. In Sec. IV we return
namic scale invariance and “normal” scaling in the case ofto the globally conserved Ginzburg-Landau equation and in-
global conservatiof6], and breakdown of scale invariance vestigate the finger dynamics numerically. Section V in-
and anomalous scaling in locally conserved systEnf). cludes a brief discussion.
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Il. GLOBALLY CONSERVED PHASE ORDERING: A 1
PHASE FIELD MODEL AND ITS SHARP-INTERFACE Kk(S,t)=—= é k(s,t)ds, (7)
LIMIT A(Y)

Globally conserved phase ordering can be described by @nd A(t) is the total interface length. Equatiof) and (6)
simple phase field modg13—15. This model represents the make a complete set and provide a general sharp-interface

dynamics in terms of a simple gradient descent formulation to this problem. In some cases this formulation
can be further simplified5,13]. Let us compute the rate of
gu  OF )  change of the domain areA;
s 1)
. — 3
with the Ginzburg-Landau free energy functional A(t)= é vn(s,t)ds=A(t)| k(s,t)— EH(U . (8
F[u]=f [(1/2)(Vu)?+V(u)+Huldr (2) If the two terms on the right hand side of E@®) balance

each other,
and a double-well potentia¥(u) = (1/4)(1—u?)2. The ef-
fective “magnetic field” H=H(t) varies in time so as to H(t)= \/—EK(T'[) 9)
impose the global conservation law 3 o

1 the domain area remains approximately constant. Then, us-
(ur,t)= L,L, u(r,t)ydr=const. () ing Egs.(5) and(9), we obtain
Here u(r,t) is the order parameter field,,>1 andL,>1 vn(s,t)=k(s,t)—k(s,t). (10

are the linear dimensions of the systéatwo-dimensional
rectangular bok and the integration is carried out over the Model (10) is known as area-preserving flow by curvature
entire box. Equation$l)—(3) yield the nonlocal Ginzburg- [17]. The dynamicqg10) reduces the interface length of the
Landau equation system[13,17], leaving the areas of each of the phases con-
stant. The only stable steady state of E) (not attached to
the boundaries of the systens a single perfectly circular
domain[13]. Under what condition is modgl10) a good
approximation to the more general sharp-interface m¢gjel
Either no-flux or periodic boundary conditions are assumedand (6)? Consider Eq(6), which includes the same combi-
For a wide class of initial conditions this coarsening sys-nation x—(3/y2)H(t). Let us treat the term on the right
tem segregates, at late times, into large domains of “phaskand side of Eq(6) perturbatively, puttingH(t)=H©)(t)
1" and “phase 2" separated by thin domain wallehose | (1), whereH(©)(t) = (\/2/3)« is the leading term ank(t)

width is of order unity [5,13,16. Correspondingly, a sharp- 5 g subleading term. Keeping terms up to ortt) we
interface theory can be developed for these late tiffgsAt  ptain

these times the magnetic field(t) is already smallH(t)

Ju
E=V2u+u—u3—(u—u3>. (4)

<1, and slowly varies with time. The phase field in the LL, . Lol
phases 1 and 2 is almost uniform and rapidly adjusts to the h(t)=— ———2HO(t)=— X—Ay? (12)
current value ofH(t), so thatu=—-1-H(t)/2 and 1 12A 18
—H(t)/2, respectively. The normal velocity of the interface _
is given by[5] If there is only ong(singly connecteddomain,x= —2#/A.
Therefore,
(s,t)=«(s,t) ° H(t) (5 '
vp(s,t)=k(s,t)— — ; L,Ly, A
" 2 h(t)= — _Y (12)

9 A%
wherek is the local curvature ansglis the coordinate along

the interface. The positive sign of, corresponds to the in- Requiring |h(t)|<|H)(t)|, we obtain the “area-
terface moving toward phase 1, whiteis positive when the preservation” criterion

interface is convex toward phase 2.

The dynamics oH(t) is determined by5] |_X|_y|A|
e <1. (13
- 20 - She (6)
=5 K Sa - = il
LyLy V2 In Sec. lll we will investigate the area-preserving dynamics
of a long slender finger, and verify criterigd3) a poste-
where riori .
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IIl. AREA-PRESERVING FINGER DYNAMICS: A

J
PERTURBATION THEORY N_ Yxx

ot 1ty

(19

Let the initial condition for dynamicg10) represent a

long and narrow rectangular bar with lengthg2and width  was obtained more than 40 years ago by Mullins in the con-
2A,. We will see that, with time, the bar evolves into a text of motion of grain boundarigg9]. It corresponds to a
finger-shaped object. We place the origin of a Cartesian cononconservednotion by curvaturew ,(s,t)= . We notice
ordinate system in the finger's center and denotextiie  immediately that the perturbed problem H@4) possesses
coordinate along the finger and lyy=y(x,t) the instanta- an integral of motion(the finger areathat is absent in the
neous location of the finger boundary. Because of the symeorresponding unperturbed problem. This situation is un-
metry with respect to the axis, we will be interested only in  usual: more often than not perturbations destroy integrals of
the upper boundary dynamicgx,t)=0. In terms ofy(x,t) motion pertinent to the unperturbed system. This unusual

the local curvature is given byl 8] property will be exploited in the following, as we will re-
quire area conservation in each order of the perturbation ex-
Yix pansion.
Kk(s,t)= (1+—y2)3,2 Mullins [19] obtained a one-parameter family of
X

traveling-wave solutions of Eq15) describing a half-infinite

— constant-width finger retreating by its tip’s curvature:
wherey,=dy(x,t)/dx. The average curvatume(s,t) is

1
o _W y=Y(x,t) = carccofexp(—cé)], (16
k(s,t)= N

a(t) !

Zf (1+y5)dx where é=a(t)—x, a(t)=ay—ct is the time-dependent po-
0 sition of the finger tip, and the constant speed of retedat
the parameter of this family of solutions. The finger’s half
width A= 7/(2c) is constant. We will show that this solu-
tion (with two important modificationscan serve as the
ay leading- (or zerojorder approximation of our perturbation

—=(1+y§)1/2un, theory for the area-preserving finger dynamics. First, we in-
at troduce a(slow) time dependence in the parameterSec-
) o ) . ) ond, we “stick together” two identicalvery long but finite
dynamics(10) implies the following evolution equation for pgf fingers. The resulting ansatz is the following:

y(x,t):

wherea(t) is the time-dependent position of the finger tip.
Since

1
Ay Yxx m(1+y)? 14 Y(x.t) = gryarccogexd —c() £}, (17)
at 2 a()
LHyx Zfo (1+y2)Y2dx whereé=a(t) —|x|, anda(t)>0 is yet unknown. The finger

half width A (t) = 7/2¢(t) is now time dependent; its growth
_ . . with time makes up, in area conservation, for the finger
a(t) is defined by the boundary conditiopéx=a,t)=0 and  gportening. As a function of, ansatz(17) is continuous ev-
yx(x=2a,t)=—c. An additional boundary condition follows gry\yhere. Itsx derivative is not continuous at=0. How-
from the symmetry with respect to theaxis: y(x=01)  eyer, as long as(t)=A(t)/a(t) is very small,e(t)<1, the
;O. E'quat|o.n(1f1), a nonlmlear integro-differential equatlon'x derivatives atx=0 from left and right are of order
in partial derivatives, descnbe_s a free boundary p_roblem. It I$xp(—1/€), that is, exponentially small. This and other expo-
easy to check that the dynamids) preserves the finger area penially small effects will be neglected throughout the pa-
A. i ) per. Because of the symmetry with respect to yteis, we
It can be proved|13] that any convex domain evolving by i consider only the region &x=a(t). The perturbation
Eq. (10) [and therefore by Eq14)] finally becomes a circle expansion fory(x,t) is

with the same areA. We are interested in the finger dynam-

ics at times much smaller than those needed for approaching y(X, 1) =Y(X,t) + Sy(x,t) + - - -, (18

this equilibrium (but still large enough so that details of the

initial shape are forgottgnThe corresponding strong double where sy(x,t) is the subleadingor first-ordej term. Insert-

inequality will be presented at the end of this section. ing Eq. (17) into Eqg. (14) and keeping only the-zero order
As long as the ratio of the finger width to its length is terms, we obtain

small, we can use it as the small parameter of our theory.

Indeed, near the finger tip the firdbcal) term on the right a=—-c=— 7l (2A). (19

hand side of Eq(14) is of the order of the inverse finger

width, while the secon¢nhonloca) term is of the order of the The evolution equation foA(t) follows from the require-

inverse finger length. Therefore, the nonlocal term can benent of area conservation in zero order. Calculating the area

treated perturbatively. The unperturbed equation under theY(x,t) profile, we obtain
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a 2 2 2
f Oy vdxead— 2222 o e, (1) f gt c(2u2+ 1)f
0 . .
(c+aju c
(20) _(etau oo o |
(1_u2)1/2 CZq(u) 2a(1_u2)1/2 (28)

One can see that the finger area in zero order is simply

=4aA. DemandingA=0 and using Eq(19), we obtain .Going over fromg to u and definingf(£) =g(u) we ob-

tain

A=/(2a). (21) (c+a) 1 c q(u)

1-u?)g,,—3ug,= ——
( )guu gU C2 u(l—uz)llz C4 u2

We will see later that the same equation follows from the

analysis of the first-order correction. The solution of the

zero-order equationd9) and(21) is B ™ 29)
2ac?u?(1—u?)¥?

alO(t)=a, exp(— 7t/2a,A ) (22)
We defined (u)=g,(u). The general solution of the homo-
and geneous equation fab(u) is CPy(u), where
AO(t)=Aq exp(mt/2a0A ). (23) Do(u)=(1-u?)~372 (30

Therefore, in zero order, the finger shortdasd its width ~and C is an arbitrary constant. Therefore, we look for the
grows exponentially with time. The characteristic growth general solution of Eg.(29) in the form ®(u)
time is of order of the finger area. The zero-order solution= C(U)®o(u), whereC(u) is an unknown function. Substi-
yields a criterion for the validity of the perturbation theory. tuting this into Eq.(29) and integrating, we obtain

The aspect ratio of the evolving finger should be very small,

: c+
which leads to C(u)= ( )

U= < s(U)+ ——+a(t), (31
nu C4S(u) 5 a(t), (31

acu
Ao

<apAg In

(24 where

This condition sets an upper limit for the times for which our ¢, — Emz Ut Earcco% U—Inu— (1-u?)*arccow
perturbation expansion is valid. 2 2 u '

We now turn to calculating the small correctiog(x,t). (32
Since the nonlocal term of E¢l4) is already of ordeg, we
evaluate it on the zero-order solutiof(x,t), which yields
m(2a) "}(1+Y2)Y2 We introduce a new variable

and «(t) is an arbitrary function of time. Going back to
g(u), we can write the first-order correction to the finger
shape as

u(x,t)y=exd —c(t)&]. (25 u
g(U)=f C(u)@o(u)du+ B(t), (33
Substituting Eq(18) into Eq.(14) and linearizing, we get a 0

linear partial differential equation fasy(x,t): where3(t) is another arbitrary function of time. The bound-

a2 _ 5 ary conditions forg(u) areg(0)=0 andg(1)=0. The first
OY1= (1= U%) Y xx— 2C U™y boundary condition giveg(t)=0, while the second bound-

(c+aju ary condition should be used to find an equationéfo'n the
BTN (26)  first order. Before doing this, an analysis of the integrals in

(1-u) Eq. (33) should be made. To prevent divergencegfi) at
u=1 we must requirex(t)= —«/(2ca). Similarly, to pre-
vent divergence ofj(u) at u=0 we must requirec/c?=
—1/a. The latter equation is equivalent to E@1) obtained

q(u)= Inu + arccodl. (27) in the leading order from the requirement of area conserva-
(1—u?)¥? tion.

c
+—q(u)+ ——,
czq() 2a(1—u?)??

where

' _ . . The equation fora in the first order of the perturbation
It is convenient to go over to new independent va_rlaljjles theory is obtained from the boundary conditigl)=0
andt. We definedy(x,t)=f(¢,t) and obtaindy,=f+af,. which requires calculating the integral in E@®3) from u
As thet dependence in the new variables is slow, the trm =0 tou=1. This calculation yields
can be neglected in this order of the perturbation scheme.
Therefore, we are left with an ordinary differential equation S 3In2 __ T 3In2

. a=—c+ = + (34

(the slow time enters as a paramgter a 2A a
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It is now possible to obtain an explicit expression §fu). ra 4In2 aln?2

An integration from 0 tau in Eq. (33) gives a=-— Jagho +— 2 (41)
1 ) 8u
g(u)=——|wy(u)—arcsinuIn| — . @mA  AIn2 AIln2 A%In2
c“a € A= o - (42
2apA¢ ap a? agAg
a
+=1In —) +wy(u)|, (35  We are looking for solutions in the form af(t)=a‘®(t)
2 Y
e[1+(1-u?)™] +al() and A(t)=AO )+ AD(t), where a®(t) and

AM(t) are first-order corrections. Solving the resulting lin-

where ear equations, we obtain
2uln uln(8u¥¥e)+uarccod u+ m(1—u) 8A, In2 ot tin2 ot
wi(u)= PNT : aW(t)= sin?‘( - exy{ - :
2(1_U ) o™ Zavo dp Zavo
(36) (43
and 4A31In2 mt o\ t
A= 7a ex apA sin 23,A
uarcsinu 0 070 =0
wo(W)=2 du. 37 Aot In2 t
+ ex . (44
a3 '{ZaOAo

In the absence of a conservation law, we would have to go to

second order of the perturbation scheme to obtain the equgye checked that when solving Eq@4) and (40) numeri-
tion for ¢ in first order. In our area-preserving perturbation cally the results differ from the approximate analytical re-
scheme this equation can be obtained already in the firsults (43) and (44) by less than 1%. Finally, requiring
order. Notice that the first-order correction obeys the follow-a(9(t)>a"(t) and A©(t)>A®M(t) and using Eqs(22),
ing conservation law: (23), (43), and(44), one can see that the linearization proce-
dure is valid for times obeying the same strong inequality
d [a . (24). Therefore, the linearization procedure is consistent with
&JO dy(x,tydx=a[f({=a,)=f(£=01)]=0, the perturbation theory.
(39) The validity of our perturbative solution is limited by not
too long times; see inequalit{24). On the other hand, one

where the last equality results from the boundary conditionsShould wait until irrelevant details of the initial bar shape are

This relation combined with the requirement that the fingerforgotten, and the solution approachegx,t). Typically, it
area is preserved leads to takes the time needed for the bar tip to pass a distance of

order of the characteristic tip sizect* A. The tip speed is of
d ra® order 1A, so the “waiting time” of the theory can be esti-
at)s Y(x,t) dx=0. (39 mated as\3. Our perturbative solution represents, therefore,
an intermediate asymptotics, valid for

It should be stressed that functioaét) and A(t) entering
Eq. (39 now include first-order corrections. Now, using Egs. A§<t<aOA0 In
(20), (34), and (39) and keeping terms only up to the first
order ine, we obtain

=k

v (45)

Finally, we should check the area-preservation crite(i8).
In the leading order we have\(t)~a(®(t) and A(t)

7 Aln2 ) . )
=52 (400  ~aO(t)~1/AO)Xt). Using Egs.(22) and (23) in Eq. (13)
a a we obtain
Equations(34) and(40) are the equations far and forA t<agl, In(fay), (46)

in the first order of the perturbation scheme. This set of equa-

tions is autonomous and therefore integrable. In the ffam&mhere?z(aOAo)/(LxLy) is the area fraction occupied by the
work of the perturbation theory it is more consistent to solvefinger.
the equations perturbatively by linearization. To do this, we
exploit the conservation law39) which, together with Eq.

(20), allows us to expresA(t) as a function of(t) or vice

versa. The expression obtained is then linearized with respect In order to test the predictions of the perturbation theory
to A/a and inserted into Eq.34) [or Eq. (40)]. This yields we performed numerical simulations with the nonlocal
the following equations: Ginzburg-Landau equatiof) (with no-flux boundary con-

IV. NUMERICAL SOLUTION
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FIG. 1. A semilogarithmic plot of the finger half lengthversus FIG. 2. A semilogarithmic plot of the finger half width versus

time. The solid line representgt) found numerically. The dashed time. The solid line isA(t) found numerically. The dashed line
line shows the zero-order analytic resaff)(t). The dotted line is  shows the zero-order analytic resnlf)(t). The dotted line is the
the first-order analytic resu#t(®(t) +a)(t). first-order analytic resuls (@ (t) + A(M)(t).

ditions), taking a long and narrow rectangular bar as the Figure 3 shows the finger shapéx,t) found numerically,

initial condition. We used an explicit Euler integration at the final time of the simulation;=9x10* (notice the

scheme to advance the solution in time, and second-ordefifferent scales in thex andy axes. Also shown are the

central differences to discretize the Laplace operator. A mesfollowing zero- and first-order theoretical results evaluated at

size of Ax=Ay=0.5 was found sufficient for an accurate t=t;:

resolution of the interface. A time step at=0.05 was re-

quired for numerical stability. The bar widthA2=50 was ) B ()41 £(0)

chosen to guarantee area conservation with a good accuracy Y (%0= C(O)(t)arccoﬁexp(—c (DED], @47

[see Eq.46)]. The simulation was carried out up to a time

t;=9x10* which was long enough to distinguish betweenyhere £ =a®)(t) —x, and

exponential and linear dynamic behavior ft) and A(t).

The bar length 2,=8X% 10° was chosen, so that the param- 1

eter e(t)=A(t)/a(t) was sufficiently small even at the end ys(x,t)= marcco@exp(—cs(t)gs)ﬂ Sy(x,1), (48)

of the simulation(when it reached 0.1). The bar was placed

in the center of a rectangular box 802@20. Because of where é;=ag(t)—x, a;=a®@+a®, andc,=c@+c®. In

symmetry with respect to theandy axes only the quadrant addition is shown the functiol,,,(x,t) defined by

x>0,y>0 was actually simulated. We checked that the fin-

ger area was conserved with an accuracy better than 1%.
The time dependence of the finger half lengtft) ob-

tained from the numerical simulations is shown in Fig. 1.

The same graph also shows the theoretical valuegfin ~ Where &, m=anum(t) =X, and any(t) and c,yn(t) are the

the zeroth ordefa®(t), Eq. (22)], and first ordefal®(t) numerical values o&(t) andc(t), respectively. The function

+a®(t), Eq.(43)] of the perturbation theory. A good agree-

1
Youm(X,t) = mafccoﬁexp(— Cnum(t)gnum)]a (49

ment between the numerical and analytical results is already 20 7T T 7T 7T
obtained in the zeroth order. This agreement is improved 100 -
further by the first-order correction. For example, at the final 80 4

time of the simulatiort;=9x 10%, there is a 9% difference

p— B [

between the numerical valuesaft) anda(®)(t), and only a ';. 60 L
1.4% difference between the numerical valuesa(t) and = T
a@t)+a®(t). 2 |- :
The half width of the fingerA(t) found numerically is ol L o 1 411y :

shown in Fig. 2. Its comparison with the zero-order values
A©(t) [Eq. (23)] and the first-order valuesA(®)(t)
+A®(t) [Eq. (44)] is also shown. Again, there is already X

good agreement in the zeroth order, and this agreement is £iG. 3. The finger shapg(x,t;) (solid line). The dashed line is
further improved by the first-order correction. At the final the functionY(©(x,t;) defined by Eq(47), the dashed-dotted line is
time of the simulation, the numerical value &ft) differs by  the function(48), and the dotted line is the functiog@9). All the
6% from A©(t), and by less than 2% from\(O)(t) functions are evaluated &t=t;=9x10*. The dotted line is indis-
+AM(1). tinguishable from the solid line.

o

200 400 600 800 1000
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14 ————— V. CONCLUSIONS
12 We investigated the dynamics of a long slender finger-
1.0 - shaped domain undergoing globally conser\@terface-

- 0.8 - controlled coarsening. We worked in the parameter region

% 0.6 - where these dynamics can be reduced to area-preserving mo-

= 04 |- tion by curvature. The nonlinear moving boundary problem

e 0.2 | for the finger shape was solved by using an asymptotic per-
00 —F—7"7 . 1 . turbati_on theory Which_e_zmp_loyed, as the z_ero-orde_r solution,

0 200 400 600 800 1000 a straightforward modification of the Mullins solution for a

finger retreating by the curvature of its tip. Both the leading
and the subleading terms of the solution were calculated ana-
lytically and verified by a numerical solution of the corre-
sponding phase field equation: the Ginzburg-Landau equa-
tion with a global conservation law.

The coarsening dynamics of the finger look quite different
from those observed in the case of a locally conserved
the zero-order predictiod©)(x,t;) shows a good agreement (Qiffusion-controlle_d system [8]. The_ finger preserves its
even at this relatively late time, wheWVa=0.1. The agree- S|mple_ shape, while its. characteristic length and width are
ment is further improved by the first-order theory. The com-changing on the same time scale. Therefore, the global char-
parison withY,,,(x,t;) shows an excellent agreement, im- acter of trgnspor(tunmthed by Laplacian screening effe_cts
plying that the subleading termby(x,t) is very small charapter|s_t|c of thg locally c_onservg—:-d sys)el‘rlea.dy mani-
compared to the leading ter(x,t). Figure 4, which shows fests itself in the simple setting of finger dynamics.
the theoretical result fofy(x,t) att=t; calculated by using
Egs.(35—(37), confirms the last conclusion. We should add
that very good agreement was found between the theoretical This work was supported in part by the Israel Science
oy(x,t) and the numericaby(x,t), which is obtained by Foundation, administered by the Israel Academy of Sciences

X
FIG. 4. The subleading termy(x,t;) at the final time of the
simulation, as obtained by the perturbation thedtys.(35)—(37)].

Yum(X,t) is also evaluated dt=t;. The comparison with
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