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Area-preserving dynamics of a long slender finger by curvature:
A test case for globally conserved phase ordering
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A long and slender finger can serve as a simple ‘‘test bed’’ for different phase-ordering models. In this work,
the globally conserved, interface-controlled dynamics of a long finger is investigated, analytically and numeri-
cally, in two dimensions. An important limit is considered when the finger dynamics is reducible to area-
preserving motion by curvature. A free boundary problem for the finger shape is formulated. An asymptotic
perturbation theory is developed that uses the finger aspect ratio as a small parameter. The leading-order
approximation is a modification of the Mullins finger~a well-known analytic solution! whose width is allowed
to slowly vary with time. This time dependence is described, in the leading order, by an exponential law with
the characteristic time proportional to the~constant! finger area. The subleading terms of the asymptotic theory
are also calculated. Finally, the finger dynamics is investigated numerically, employing the Ginzburg-Landau
equation with a global conservation law. The theory is in very good agreement with the numerical solution.
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I. INTRODUCTION

This work is motivated by the recent developments
phase-ordering theory. Phase ordering is the growth of o
from disorder via domain growth and coarsening. As pha
ordering systems are strongly nonlinear and highly dis
dered, their theoretical description remains challenging@1#.
To get insight, it is often useful to consider the coarsen
dynamics of simple test objects. One such object is a sph
cal droplet of the ‘‘minority’’ phase. It serves as the buildin
block of simplified phase-ordering theories for locally co
served~bulk-diffusion-controlled! @2# and globally conserved
~interface-controlled! @3# systems.

Being such a simple object, a spherical droplet may
give sufficient insight. For example, its dynamics~shape-
preserving shrinking or expansion! look the same in both
locally and globally conserved systems. On the other ha
there are important differences in the phase-ordering be
ior of locally and globally conserved systems. In both cas
an ensemble of droplets exhibits Ostwald ripening, and
corresponding mean-field theories, due to Lifshitz and Sl
zov @2# and to Wagner@3#, respectively, predict dynami
scaling behavior of the droplet size distribution~with differ-
ent dynamic exponents!. However, for finite volume frac-
tions, the difference in the type of conservation law leads
a different role of correlations. Correlations between nei
boring droplets are much more important in locally co
served systems@4# than in globally conserved ones@5#. Even
bigger differences have been found in the phase-ordering
namics of locally and globally conserved systems with lon
range correlations. Coarsening offractal clustersshows dy-
namic scale invariance and ‘‘normal’’ scaling in the case
global conservation@6#, and breakdown of scale invarianc
and anomalous scaling in locally conserved systems@7,8#.
1063-651X/2001/63~6!/066101~7!/$20.00 63 0661
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It is natural to attribute these differences to a basic diff
ence in the character of transport: in globally conserved s
tems the transport is uninhibited by Laplacian screening
fects, typical for locally conserved diffusion-controlle
systems. To study this basic difference in a simple sett
the dynamics of a single long and slender finger is of
considered. It has been found recently@8# that, in a locally
conserved, diffusion-controlled system, the finger acquire
dumbbell shape and shows nontrivial dynamic scalings
the finger length and the ‘‘ball’’ size, while the initial finge
width remains almost constant until a late stage of the
namics. Furthermore, a finger-shaped domain~a ‘‘needle’’!
served as a test object in still another conserved coarse
system: the one controlled by edge diffusion@9#. Fingerlike
objects appear naturally in two-dimensional simulations
dewetting@10#, etc. In this work we investigate the globall
conserved dynamics of a long slender finger. An additio
motivation for studying finger dynamics is a recent obser
tion that, at a late stage of coarsening of fractal clusters,
cluster morphology shows long branches, or fingers, in b
locally @7,8,11#, and globally@6,12# conserved systems.

Here is an outline of the rest of the paper. In Sec. II
briefly review the Ginzburg-Landau equation with a glob
conservation law~a phase field model for globally conserve
phase ordering! and its general sharp-interface formulation
two dimensions. Under a certain condition~that will be elu-
cidated! this formulation is reduced to the area-preservi
dynamics by curvature. In Sec. III we formulate a movi
boundary problem for the finger dynamics and develop
perturbation theory that enables us to obtain an intermed
asymptotic solution for the finger shape. In Sec. IV we retu
to the globally conserved Ginzburg-Landau equation and
vestigate the finger dynamics numerically. Section V
cludes a brief discussion.
©2001 The American Physical Society01-1
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II. GLOBALLY CONSERVED PHASE ORDERING: A
PHASE FIELD MODEL AND ITS SHARP-INTERFACE

LIMIT

Globally conserved phase ordering can be described
simple phase field model@13–15#. This model represents th
dynamics in terms of a simple gradient descent

]u

]t
52

dF

du
~1!

with the Ginzburg-Landau free energy functional

F@u#5E @~1/2!~“u!21V~u!1Hu#dr ~2!

and a double-well potentialV(u)5(1/4)(12u2)2. The ef-
fective ‘‘magnetic field’’ H5H(t) varies in time so as to
impose the global conservation law

^u~r ,t !&5
1

LxLy
E u~r ,t !d r5const. ~3!

Here u(r ,t) is the order parameter field,Lx@1 andLy@1
are the linear dimensions of the system~a two-dimensional
rectangular box!, and the integration is carried out over th
entire box. Equations~1!–~3! yield the nonlocal Ginzburg-
Landau equation

]u

]t
5¹2u1u2u32^u2u3&. ~4!

Either no-flux or periodic boundary conditions are assum
For a wide class of initial conditions this coarsening s

tem segregates, at late times, into large domains of ‘‘ph
1’’ and ‘‘phase 2’’ separated by thin domain walls~whose
width is of order unity! @5,13,16#. Correspondingly, a sharp
interface theory can be developed for these late times@5#. At
these times the magnetic fieldH(t) is already small,H(t)
!1, and slowly varies with time. The phase field in t
phases 1 and 2 is almost uniform and rapidly adjusts to
current value of H(t), so that u5212H(t)/2 and 1
2H(t)/2, respectively. The normal velocity of the interfa
is given by@5#

vn~s,t !5k~s,t !2
3

A2
H~ t !, ~5!

wherek is the local curvature ands is the coordinate along
the interface. The positive sign ofvn corresponds to the in
terface moving toward phase 1, whilek is positive when the
interface is convex toward phase 2.

The dynamics ofH(t) is determined by@5#

Ḣ~ t !5
4L~ t !

LxLy
S k~s,t !2

3

A2
H~ t !D , ~6!

where
06610
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k~s,t !5
1

L~ t ! R k~s,t !ds, ~7!

andL(t) is the total interface length. Equations~5! and ~6!
make a complete set and provide a general sharp-inter
formulation to this problem. In some cases this formulati
can be further simplified@5,13#. Let us compute the rate o
change of the domain area,Ȧ:

Ȧ~ t !5 R vn~s,t !ds5L~ t !Fk~s,t !2
3

A2
H~ t !G . ~8!

If the two terms on the right hand side of Eq.~8! balance
each other,

H~ t !.
A2

3
k~s,t !, ~9!

the domain area remains approximately constant. Then,
ing Eqs.~5! and ~9!, we obtain

vn~s,t !5k~s,t !2k~s,t !. ~10!

Model ~10! is known as area-preserving flow by curvatu
@17#. The dynamics~10! reduces the interface length of th
system@13,17#, leaving the areas of each of the phases c
stant. The only stable steady state of Eq.~10! ~not attached to
the boundaries of the system! is a single perfectly circular
domain @13#. Under what condition is model~10! a good
approximation to the more general sharp-interface model~5!
and ~6!? Consider Eq.~6!, which includes the same comb
nation k̄2(3/A2)H(t). Let us treat the term on the righ
hand side of Eq.~6! perturbatively, puttingH(t)5H (0)(t)
1h(t), whereH (0)(t)5(A2/3)k̄ is the leading term andh(t)
is a subleading term. Keeping terms up to orderh(t) we
obtain

h~ t !52
A2LxLy

12L
Ḣ (0)~ t !52

LxLy

18L
k̇̄. ~11!

If there is only one~singly connected! domain,k̄522p/L.
Therefore,

h~ t !52
pLxLy

9

L̇

L3
. ~12!

Requiring uh(t)u!uH (0)(t)u, we obtain the ‘‘area-
preservation’’ criterion

LxLyuL̇u

L2
!1. ~13!

In Sec. III we will investigate the area-preserving dynam
of a long slender finger, and verify criterion~13! a poste-
riori .
1-2
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III. AREA-PRESERVING FINGER DYNAMICS: A
PERTURBATION THEORY

Let the initial condition for dynamics~10! represent a
long and narrow rectangular bar with length 2a0 and width
2D0. We will see that, with time, the bar evolves into
finger-shaped object. We place the origin of a Cartesian
ordinate system in the finger’s center and denote byx the
coordinate along the finger and byy5y(x,t) the instanta-
neous location of the finger boundary. Because of the s
metry with respect to thex axis, we will be interested only in
the upper boundary dynamics:y(x,t)>0. In terms ofy(x,t)
the local curvature is given by@18#

k~s,t !5
yxx

~11yx
2!3/2

,

whereyx[]y(x,t)/]x. The average curvaturek(s,t) is

k~s,t !5
22p

L
5

2p

2E
0

a(t)

~11yx
2!1/2dx

,

wherea(t) is the time-dependent position of the finger ti
Since

]y

]t
5~11yx

2!1/2vn ,

dynamics~10! implies the following evolution equation fo
y(x,t):

]y

]t
5

yxx

11yx
2

1
p~11yx

2!1/2

2E
0

a(t)

~11yx
2!1/2dx

. ~14!

a(t) is defined by the boundary conditionsy(x5a,t)50 and
yx(x5a,t)52`. An additional boundary condition follows
from the symmetry with respect to they axis: yx(x50,t)
50. Equation~14!, a nonlinear integro-differential equatio
in partial derivatives, describes a free boundary problem.
easy to check that the dynamics~14! preserves the finger are
A.

It can be proved@13# that any convex domain evolving b
Eq. ~10! @and therefore by Eq.~14!# finally becomes a circle
with the same areaA. We are interested in the finger dynam
ics at times much smaller than those needed for approac
this equilibrium~but still large enough so that details of th
initial shape are forgotten!. The corresponding strong doub
inequality will be presented at the end of this section.

As long as the ratio of the finger width to its length
small, we can use it as the small parameter of our the
Indeed, near the finger tip the first~local! term on the right
hand side of Eq.~14! is of the order of the inverse finge
width, while the second~nonlocal! term is of the order of the
inverse finger length. Therefore, the nonlocal term can
treated perturbatively. The unperturbed equation
06610
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]t
5

yxx

11yx
2

~15!

was obtained more than 40 years ago by Mullins in the c
text of motion of grain boundaries@19#. It corresponds to a
nonconservedmotion by curvature:vn(s,t)5k. We notice
immediately that the perturbed problem Eq.~14! possesses
an integral of motion~the finger area! that is absent in the
corresponding unperturbed problem. This situation is
usual: more often than not perturbations destroy integral
motion pertinent to the unperturbed system. This unus
property will be exploited in the following, as we will re
quire area conservation in each order of the perturbation
pansion.

Mullins @19# obtained a one-parameter family o
traveling-wave solutions of Eq.~15! describing a half-infinite
constant-width finger retreating by its tip’s curvature:

y5Y~x,t !5
1

c
arccos@exp~2cj!#, ~16!

wherej5a(t)2x, a(t)5a02ct is the time-dependent po
sition of the finger tip, and the constant speed of retreatc is
the parameter of this family of solutions. The finger’s ha
width D5p/(2 c) is constant. We will show that this solu
tion ~with two important modifications! can serve as the
leading- ~or zero-!order approximation of our perturbatio
theory for the area-preserving finger dynamics. First, we
troduce a~slow! time dependence in the parameterc. Sec-
ond, we ‘‘stick together’’ two identical~very long but finite!
half fingers. The resulting ansatz is the following:

Y~x,t !5
1

c~ t !
arccos$exp@2c~ t !j#%, ~17!

wherej5a(t)2uxu, anda(t).0 is yet unknown. The finger
half width D(t)5p/2c(t) is now time dependent; its growt
with time makes up, in area conservation, for the fing
shortening. As a function ofx, ansatz~17! is continuous ev-
erywhere. Itsx derivative is not continuous atx50. How-
ever, as long ase(t)5D(t)/a(t) is very small,e(t)!1, the
x derivatives atx50 from left and right are of order
exp(21/e), that is, exponentially small. This and other exp
nentially small effects will be neglected throughout the p
per. Because of the symmetry with respect to they axis, we
will consider only the region 0<x<a(t). The perturbation
expansion fory(x,t) is

y~x,t !5Y~x,t !1dy~x,t !1•••, ~18!

wheredy(x,t) is the subleading~or first-order! term. Insert-
ing Eq. ~17! into Eq. ~14! and keeping only the-zero orde
terms, we obtain

ȧ52c52p/~2D!. ~19!

The evolution equation forD(t) follows from the require-
ment of area conservation in zero order. Calculating the a
under theY(x,t) profile, we obtain
1-3
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E
0

a(t)

Y~x,t !dx5aD2
2D2 ln 2

p
1O„exp~21/e!….

~20!

One can see that the finger area in zero order is simplA

54aD. DemandingȦ50 and using Eq.~19!, we obtain

Ḋ5p/~2a!. ~21!

We will see later that the same equation follows from t
analysis of the first-order correction. The solution of t
zero-order equations~19! and ~21! is

a(0)~ t !5a0 exp~2pt/2a0D0! ~22!

and

D (0)~ t !5D0 exp~pt/2a0D0!. ~23!

Therefore, in zero order, the finger shortens~and its width
grows! exponentially with time. The characteristic grow
time is of order of the finger area. The zero-order solut
yields a criterion for the validity of the perturbation theor
The aspect ratio of the evolving finger should be very sm
which leads to

t!a0D0 ln
a0

D0
. ~24!

This condition sets an upper limit for the times for which o
perturbation expansion is valid.

We now turn to calculating the small correctiondy(x,t).
Since the nonlocal term of Eq.~14! is already of ordere, we
evaluate it on the zero-order solutionY(x,t), which yields
p(2a)21(11Yx

2)1/2. We introduce a new variableu:

u~x,t !5exp@2c~ t !j#. ~25!

Substituting Eq.~18! into Eq. ~14! and linearizing, we get a
linear partial differential equation fordy(x,t):

dyt5~12u2!dyxx22cu2dyx

2
~c1ȧ!u

~12u2!1/2
1

ċ

c2
q~u!1

p

2a~12u2!1/2
, ~26!

where

q~u!5
u ln u

~12u2!1/2
1arccosu. ~27!

It is convenient to go over to new independent variablej

and t. We definedy(x,t)5 f (j,t) and obtaindyt5 f t1ȧ f j .
As thet dependence in the new variables is slow, the termf t
can be neglected in this order of the perturbation sche
Therefore, we are left with an ordinary differential equati
~the slow time enters as a parameter!:
06610
n
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~12u2! f jj1c~2u211! f j

5
~c1ȧ!u

~12u2!1/2
2

ċ

c2
q~u!2

p

2a~12u2!1/2
. ~28!

Going over fromj to u and definingf (j)5g(u) we ob-
tain

~12u2!guu23ugu5
~c1ȧ!

c2

1

u~12u2!1/2
2

ċ

c4

q~u!

u2

2
p

2ac2u2~12u2!1/2
. ~29!

We defineF(u)5gu(u). The general solution of the homo
geneous equation forF(u) is CF0(u), where

F0~u!5~12u2!23/2, ~30!

and C is an arbitrary constant. Therefore, we look for t
general solution of Eq. ~29! in the form F(u)
5C(u)F0(u), whereC(u) is an unknown function. Substi
tuting this into Eq.~29! and integrating, we obtain

C~u!5
~c1ȧ!

c2
ln u2

ċ

c4
s~u!1

p

2ac2u
1a~ t !, ~31!

where

s~u!5
1

2
ln2 u1

1

2
arccos2 u2 ln u2

~12u2!1/2 arccosu

u
,

~32!

and a(t) is an arbitrary function of time. Going back t
g(u), we can write the first-order correction to the fing
shape as

g~u!5E
0

u

C~u!F0~u!du1b~ t !, ~33!

whereb(t) is another arbitrary function of time. The bound
ary conditions forg(u) areg(0)50 andg(1)50. The first
boundary condition givesb(t)50, while the second bound
ary condition should be used to find an equation forȧ in the
first order. Before doing this, an analysis of the integrals
Eq. ~33! should be made. To prevent divergence ofg(u) at
u51 we must requirea(t)52p/(2ca). Similarly, to pre-
vent divergence ofg(u) at u50 we must requireċ/c25
21/a. The latter equation is equivalent to Eq.~21! obtained
in the leading order from the requirement of area conser
tion.

The equation forȧ in the first order of the perturbation
theory is obtained from the boundary conditiong(1)50
which requires calculating the integral in Eq.~33! from u
50 to u51. This calculation yields

ȧ52c1
3 ln 2

a
52

p

2D
1

3 ln 2

a
. ~34!
1-4
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It is now possible to obtain an explicit expression forg(u).
An integration from 0 tou in Eq. ~33! gives

g~u!5
1

c2a
Fw1~u!2arcsinu lnS 8u

e D
1

p

2
lnS 2

e@11~12u2!1/2#
D 1w2~u!G , ~35!

where

w1~u!5
2u ln u ln~8u1/2/e!1u arccos2 u1p~12u!

2~12u2!1/2
,

~36!

and

w2~u!52E
0

uarcsinu

u
du. ~37!

In the absence of a conservation law, we would have to g
second order of the perturbation scheme to obtain the e
tion for ċ in first order. In our area-preserving perturbati
scheme this equation can be obtained already in the
order. Notice that the first-order correction obeys the follo
ing conservation law:

d

dtE0

a(t)

dy~x,t !dx5ȧ@ f ~j5a,t !2 f ~j50,t !#50,

~38!

where the last equality results from the boundary conditio
This relation combined with the requirement that the fing
area is preserved leads to

d

dtE0

a(t)

Y~x,t ! dx50. ~39!

It should be stressed that functionsa(t) and D(t) entering
Eq. ~39! now include first-order corrections. Now, using Eq
~20!, ~34!, and ~39! and keeping terms only up to the fir
order ine, we obtain

Ḋ5
p

2a
2

D ln 2

a2
. ~40!

Equations~34! and~40! are the equations forȧ and forḊ
in the first order of the perturbation scheme. This set of eq
tions is autonomous and therefore integrable. In the fra
work of the perturbation theory it is more consistent to so
the equations perturbatively by linearization. To do this,
exploit the conservation law~39! which, together with Eq.
~20!, allows us to expressD(t) as a function ofa(t) or vice
versa. The expression obtained is then linearized with res
to D/a and inserted into Eq.~34! @or Eq. ~40!#. This yields
the following equations:
06610
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ȧ52
pa

2a0D0
1

4 ln 2

a
2

a ln 2

a0
2

, ~41!

Ḋ5
pD

2a0D0
1

D ln 2

a0
2

2
D ln 2

a2
2

D3 ln 2

a0
2D0

2
. ~42!

We are looking for solutions in the form ofa(t)5a(0)(t)
1a(1)(t) and D(t)5D (0)(t)1D (1)(t), where a(1)(t) and
D (1)(t) are first-order corrections. Solving the resulting li
ear equations, we obtain

a(1)~ t !5
8D0 ln 2

p
sinhS pt

2a0D0
D2

t ln 2

a0
expS 2

pt

2a0D0
D ,

~43!

D (1)~ t !52
4D0

2 ln 2

pa0
expS pt

a0D0
D sinhS pt

2a0D0
D

1
D0t ln 2

a0
2

expS pt

2a0D0
D . ~44!

We checked that when solving Eqs.~34! and ~40! numeri-
cally the results differ from the approximate analytical r
sults ~43! and ~44! by less than 1%. Finally, requiring
a(0)(t)@a(1)(t) and D (0)(t)@D (1)(t) and using Eqs.~22!,
~23!, ~43!, and~44!, one can see that the linearization proc
dure is valid for times obeying the same strong inequa
~24!. Therefore, the linearization procedure is consistent w
the perturbation theory.

The validity of our perturbative solution is limited by no
too long times; see inequality~24!. On the other hand, one
should wait until irrelevant details of the initial bar shape a
forgotten, and the solution approachesY(x,t). Typically, it
takes the time needed for the bar tip to pass a distanc
order of the characteristic tip size 1/c;D. The tip speed is of
order 1/D, so the ‘‘waiting time’’ of the theory can be esti
mated asD0

2. Our perturbative solution represents, therefo
an intermediate asymptotics, valid for

D0
2!t!a0D0 ln

a0

D0
. ~45!

Finally, we should check the area-preservation criterion~13!.
In the leading order we haveL(t);a(0)(t) and L̇(t)
;ȧ(0)(t);1/D (0)(t). Using Eqs.~22! and ~23! in Eq. ~13!
we obtain

t!a0D0 ln~ f̃ a0!, ~46!

wheref̃ 5(a0D0)/(LxLy) is the area fraction occupied by th
finger.

IV. NUMERICAL SOLUTION

In order to test the predictions of the perturbation theo
we performed numerical simulations with the nonloc
Ginzburg-Landau equation~4! ~with no-flux boundary con-
1-5



th
n
rd
e
te

ra
e

en

-
d
ed

t
n
.

1

e-
a
ve
na

e

y
nt
al

at

d e

PELEG, MEERSON, VILENKIN, AND CONTI PHYSICAL REVIEW E63 066101
ditions!, taking a long and narrow rectangular bar as
initial condition. We used an explicit Euler integratio
scheme to advance the solution in time, and second-o
central differences to discretize the Laplace operator. A m
size of Dx5Dy50.5 was found sufficient for an accura
resolution of the interface. A time step ofDt50.05 was re-
quired for numerical stability. The bar width 2D0550 was
chosen to guarantee area conservation with a good accu
@see Eq.~46!#. The simulation was carried out up to a tim
t f593104 which was long enough to distinguish betwe
exponential and linear dynamic behavior fora(t) andD(t).
The bar length 2a0583103 was chosen, so that the param
eter e(t)5D(t)/a(t) was sufficiently small even at the en
of the simulation~when it reached 0.1). The bar was plac
in the center of a rectangular box 80203220. Because of
symmetry with respect to thex andy axes only the quadran
x.0,y.0 was actually simulated. We checked that the fi
ger area was conserved with an accuracy better than 1%

The time dependence of the finger half lengtha(t) ob-
tained from the numerical simulations is shown in Fig.
The same graph also shows the theoretical values ofa(t) in
the zeroth order@a(0)(t), Eq. ~22!#, and first order@a(0)(t)
1a(1)(t), Eq.~43!# of the perturbation theory. A good agre
ment between the numerical and analytical results is alre
obtained in the zeroth order. This agreement is impro
further by the first-order correction. For example, at the fi
time of the simulationt f593104, there is a 9% difference
between the numerical values ofa(t) anda(0)(t), and only a
1.4% difference between the numerical values ofa(t) and
a(0)(t)1a(1)(t).

The half width of the fingerD(t) found numerically is
shown in Fig. 2. Its comparison with the zero-order valu
D (0)(t) @Eq. ~23!# and the first-order valuesD (0)(t)
1D (1)(t) @Eq. ~44!# is also shown. Again, there is alread
good agreement in the zeroth order, and this agreeme
further improved by the first-order correction. At the fin
time of the simulation, the numerical value ofD(t) differs by
6% from D (0)(t), and by less than 2% fromD (0)(t)
1D (1)(t).

FIG. 1. A semilogarithmic plot of the finger half lengtha versus
time. The solid line representsa(t) found numerically. The dashe
line shows the zero-order analytic resulta(0)(t). The dotted line is
the first-order analytic resulta(0)(t)1a(1)(t).
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Figure 3 shows the finger shapey(x,t) found numerically,
at the final time of the simulationt f593104 ~notice the
different scales in thex and y axes!. Also shown are the
following zero- and first-order theoretical results evaluated
t5t f :

Y(0)~x,t !5
1

c(0)~ t !
arccos@exp„2c(0)~ t !j (0…

…#, ~47!

wherej (0)5a(0)(t)2x, and

ys~x,t !5
1

cs~ t !
arccos@exp„2cs~ t !js…#1dy~x,t !, ~48!

where js5as(t)2x, as5a(0)1a(1), and cs5c(0)1c(1). In
addition is shown the functionYnum(x,t) defined by

Ynum~x,t !5
1

cnum~ t !
arccos@exp„2cnum~ t !jnum…#, ~49!

where jnum5anum(t)2x, and anum(t) and cnum(t) are the
numerical values ofa(t) andc(t), respectively. The function

FIG. 2. A semilogarithmic plot of the finger half widthD versus
time. The solid line isD(t) found numerically. The dashed lin
shows the zero-order analytic resultD (0)(t). The dotted line is the
first-order analytic resultD (0)(t)1D (1)(t).

FIG. 3. The finger shapey(x,t f) ~solid line!. The dashed line is
the functionY(0)(x,t f) defined by Eq.~47!, the dashed-dotted line is
the function~48!, and the dotted line is the function~49!. All the
functions are evaluated att5t f593104. The dotted line is indis-
tinguishable from the solid line.
1-6
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Ynum(x,t) is also evaluated att5t f . The comparison with
the zero-order predictionY(0)(x,t f) shows a good agreemen
even at this relatively late time, whenD/a.0.1. The agree-
ment is further improved by the first-order theory. The co
parison withYnum(x,t f) shows an excellent agreement, im
plying that the subleading termdy(x,t) is very small
compared to the leading termY(x,t). Figure 4, which shows
the theoretical result fordy(x,t) at t5t f calculated by using
Eqs.~35!–~37!, confirms the last conclusion. We should a
that very good agreement was found between the theore
dy(x,t) and the numericaldy(x,t), which is obtained by
subtractingYnum(x,t) from the numerical result fory(x,t).

FIG. 4. The subleading termdy(x,t f) at the final time of the
simulation, as obtained by the perturbation theory@Eqs.~35!–~37!#.
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V. CONCLUSIONS

We investigated the dynamics of a long slender fing
shaped domain undergoing globally conserved~interface-
controlled! coarsening. We worked in the parameter regi
where these dynamics can be reduced to area-preserving
tion by curvature. The nonlinear moving boundary proble
for the finger shape was solved by using an asymptotic p
turbation theory which employed, as the zero-order soluti
a straightforward modification of the Mullins solution for
finger retreating by the curvature of its tip. Both the leadi
and the subleading terms of the solution were calculated a
lytically and verified by a numerical solution of the corr
sponding phase field equation: the Ginzburg-Landau eq
tion with a global conservation law.

The coarsening dynamics of the finger look quite differe
from those observed in the case of a locally conser
~diffusion-controlled! system @8#. The finger preserves its
simple shape, while its characteristic length and width
changing on the same time scale. Therefore, the global c
acter of transport~uninhibited by Laplacian screening effec
characteristic of the locally conserved system! already mani-
fests itself in the simple setting of finger dynamics.
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